Abstract

Atomically thin materials based on transition-metal dichalcogenides and graphene offer a promising avenue for unlocking the mechanisms underlying the spin Hall effect (SHE) in heterointerfaces. Here we develop a microscopic theory of the SHE for twisted van der Waals heterostructures that fully incorporates twisting and disorder effects and illustrate the critical role of symmetry breaking in the generation of spin Hall currents. We find that an accurate treatment of vertex corrections leads to a qualitatively and quantitatively different SHE than that obtained from the popular iη and ladder approximations. A pronounced oscillatory behavior of skew-scattering processes with twist angle θ is predicted, reflecting a nontrivial interplay of Rashba and valley-Zeeman effects and yields a vanishing SHE for θ=30∘ and, for graphene-WSe2 heterostructures, an optimal SHE for θ≈17∘. Our findings reveal disorder and broken symmetries as important knobs to optimize interfacial SHEs. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.