Abstract

We study spin the Hall effect (SHE) of reflected light in a dielectric magneto-optical thin film of Ce1Y2Fe5O12 (Ce:YIG) with a double-negative (DNG) metamaterial substrate. The spin-dependent splitting expressions of left- and the right-handed circularly polarized (LHCP and RHCP) components in longitudinal, polar and transverse magneto-optical Kerr effect (MOKE) configurations are obtained. Meanwhile we first obtain the analytical expressions of the SHE shift of reflected light for three MOKE configurations by proper approximation. Owing to the enhancement of the MOKE by DNG metamaterial, the external magnetic field shows a large enhancement and modulation to spin-dependent splitting of reflected light. Based on simulation results, the influences of magnetic field direction and substrate material on the transverse centroid shifts of the reflected left- and right-handed circularly polarized light perpendicular to incident plane are analyzed. We find the maximum spin-dependent splitting between LHCP and RHCP components achieves about 9.2 μm and the maximum value of the magneto-optical spin Hall effect (MOSHE) shift reaches 9 μm in polar MOKE configuration. In order to make our results convincing we use a realizable DNG metamaterial with silver nanostructures as substrate to verify our conclusion. The DNG metamaterial provides a flexible method to manipulate and enhance SHE of light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.