Abstract
Spin Hall effect for excitons in alkali halides and in ${\text{Cu}}_{2}\text{O}$ is investigated theoretically. In both systems, the spin Hall effect results from the Berry curvature in $k$ space, which becomes nonzero due to lifting of degeneracies of the exciton states by exchange coupling. The trajectory of the excitons can be directly seen as spatial dependence of the circularly polarized light emitted from the excitons. It enables us to observe the spin Hall effect directly in the real-space time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.