Abstract

Spin-orbit coupling in graphene can be enhanced by chemical functionalization, adatom decoration, or proximity with a van der Waals material. As it is expected that such enhancement gives rise to a sizable spin Hall effect, a spin-to-charge current conversion phenomenon of technological relevance, it has sparked wide research interest. However, it has only been measured in graphene/transition-metal dichalcogenide van der Waals heterostructures with limited scalability. Here, we experimentally demonstrate the spin Hall effect up to room temperature in graphene combined with a nonmagnetic insulator, an evaporated bismuth oxide layer. The measured spin Hall effect arises most likely from an extrinsic mechanism. With a large spin-to-charge conversion efficiency, scalability, and ease of integration to electronic devices, we show a promising material heterostructure suitable for spin-based device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.