Abstract

We investigate the spin Hall effect in a single-layer graphene device with disorder and interface-induced spin–orbit coupling. Our graphene device is connected to four semi-infinite leads that are embedded in a Landauer–Büttiker setup for quantum transport. We show that the spin Hall angle of graphene devices exhibits mesoscopic fluctuations that are similar to metal devices. Furthermore, the product between the maximum spin Hall angle deviation and dimensionless longitudinal conductivity follows a universal relationship ΘsH×σ=0.18. Finally, we compare the universal relation with recent experimental data and numerically exact real-space simulations from the tight-binding model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.