Abstract

We study spin glasses on random lattices with finite connectivity. In the infinite connectivity limit they reduce to the Sherrington Kirkpatrick model. In this paper we investigate the expansion around the high connectivity limit. Within the replica symmetry breaking scheme at two steps, we compute the free energy at the first order in the expansion in inverse powers of the average connectivity (z), both for the fixed connectivity and for the fluctuating connectivity random lattices. It is well known that the coefficient of the 1/z correction for the free energy is divergent at low temperatures if computed in the one step approximation. We find that this annoying divergence becomes much smaller if computed in the framework of the more accurate two steps breaking. Comparing the temperature dependance of the coefficients of this divergence in the replica symmetric, one step and two steps replica symmetry breaking, we conclude that this divergence is an artefact due to the use of a finite number of steps of replica symmetry breaking. The 1/z expansion is well defined also in the zero temperature limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.