Abstract

The compounds RFeTi2O7 (R=Lu and Tb) crystallize at room temperature in centrosymmetric orthorhombic space group Pcnb. There are five non-equivalent positions of the iron ions: the two positions, Fe’ and Fe”, in the octahedron consisting of the Fe’ tetrahedron and Fe” five-vertex polyhedron and the three positions, Fe1, Fe2 and Fe3 in the mixed Fe-Ti octahedra [1]. The populations of the mixed Fe-Ti sites are different. The crystal structure features lead to atomic disorder in the distribution of the magnetic ions in this compound. From low temperature heat capacity, magnetization and frequency dependent ac susceptibility we conclude that both compounds undergo a spin glass transition at TSG=4.5 and 6K for R =Lu and Tb, respectively. Since Lu is not magnetic, in RFeTi2O7 the spin glass behavior is caused by the disordered distribution of the magnetic Fe3+ ions in the different crystallographic positions. The substitution of the magnetic and highly anisotropic Tb ion instead of Lu increases TSG because of the additional Tb-Fe exchange interaction, while the critical exponent of the frequency dependence on temperature hardly varies. The spin glass behavior in these crystalline compounds is caused by the presence of competitive interactions that lead to frustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.