Abstract

Quantum materials, with nontrivial quantum phenomena and mechanisms, promise efficient quantum technologies with enhanced functionalities. Quantum technology is held back because a gap between fundamental science and its implementation is not fully understood yet. In order to capitalize the quantum advantage, a new perspective is required to figureout and close this gap. In this review, spin gapless quantum materials, featured by fully spin-polarized bands and the electron/hole transport, are discussed from the perspective of fundamental understanding and device applications. Spin gapless quantum materials can be simulated by minimal two-band models and could help to understand band structure engineering in various topological quantum materials discovered so far. It is explicitly highlighted that various types of spin gapless band dispersion are fundamental ingredients to understand quantum anomalous Hall effect. Based on conventional transport in the bulk and topological transport on the boundaries, various spintronic device aspects of spin gapless quantum materials as well as their advantages in different models for topological field effect transistors arereviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.