Abstract
We consider the exchanged Hamiltonian HST=−J∑〈rr′〉(2Sr⋅Sr′−12)(2Tr⋅Tr′−12), describing two isotropic spin-1/2 Heisenberg antiferromagnets coupled by a quartic term on equivalent bonds. The model is relevant for systems with orbital degeneracy and strong electron-vibron coupling in the large Hubbard repulsion limit. To investigate the ground state properties we use a Green’s Function Monte Carlo, calculating energy gaps and correlation functions, the latter through the forward walking technique. In one dimension we find that the ground state is a “crystal” of valence bond dimers. In two dimensions, the spin gap appears to remain finite in the thermodynamic limit, and, consistently, the staggered magnetization—signal of Néel long range order—seems to vanish. From the analysis of dimer–dimer correlation functions, however, we find no sign of a valance bond crystal. A spin liquid appears as a plausible scenario compatible with our findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.