Abstract

The magnetic excitation spectrum of electron-doped copper oxide superconductors is calculated using the Hubbard model on a square lattice. First, the on-site repulsion is treated with the random phase approximation. The spectrum of electron-doped systems in the superconducting state is compared with that of hole-doped systems, and the relationship between the frequency at which a peak grows in the spectrum and the superconducting energy gap at a hot spot (an intersection of the Fermi surface and the magnetic Brillouin zone boundary) is investigated. As compared with the hole-doped systems, the resonance condition is difficult to be satisfied in the electron-doped systems because of the small density of states around the hot spot. Moreover, the correlation effect in the Hubbard model is treated by the fluctuation-exchange approximation (FLEX), and the spin fluctuation spectra in the superconducting state in a wide region of the wave vector and frequency are calculated. We have found that the intensity of the magnetic spectrum at incommensurate wave vectors obtained with the FLEX is considerably weaker than that obtained with the RPA. The validity of the Fermi-liquid approach is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.