Abstract

We present a practical approach to treat static and dynamical correlation accurately in large multiconfigurational systems. The static correlation is taken into account by using the spin-flip approach, which is well-known for capturing static correlation accurately at low-computational expense. Unlike previous approaches to add dynamical correlation to spin-flip models which use perturbation theory or coupled-cluster theory, we explore the ability to use the on-top pair-density functional theory approaches recently developed by Gagliardi and co-workers (J. Comput. Theor. Chem., 2014, 10, 3669). External relaxations are performed in the spin-flip calculations through a restricted active space framework for which a truncation scheme for the orbitals used in the external excitation is presented. The performance of the approach is demonstrated by computing energy gaps between ground and excited states for diradicals, triradicals, and linear polyacene chains ranging from naphthalene to dodecacene. Accurate results are obtained using the new approach for these challenging open-shell molecular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call