Abstract
Silicene is a graphene-like material with relatively strong spin-orbit coupling exhibiting gapless topologically protected edge states. In addition, it has a buckled structure, and hence, it stands as a feasible candidate for spintronic applications, where spin-polarized channels could be controlled with external electric fields realized with voltage gates attached to a Silicene sheet. Breaking the periodicity in 2D-materials with spin-orbit coupling produces one-dimensional edge and interface nanostructures that may give rise to an intrinsic locking of spin-polarization to electron momentum. We consider field induced and chemical ways to create interfaces to give way to spin polarized states for both zigzag and armchair alignments. While the spin polarization of a field induced interface channel can be feasibly tuned, a chemical interface is less flexibly tunable. However, controlling Fermi-level, e.g. with a gate voltage, might serve as a spin valve along the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.