Abstract

The mineral malachite, $\mathrm{Cu}{}_{2}(\mathrm{OD}){}_{2}\mathrm{CO}{}_{3}$, has a quantum spin-liquid ground state and no long-range magnetic order down to at least $T=0.4$ K. Inelastic neutron scattering measurements show that the excitation spectrum consists of dispersive gapped singlet-triplet excitations, characteristic of spin-1/2 dimer-forming Heisenberg antiferromagnets. We identify a distinct two-dimensional dimerized coupling scheme with strong interdimer coupling ${J}^{\ensuremath{'}}/{J}_{1}\ensuremath{\approx}0.3$ that places malachite between strongly coupled alternating chains, square lattice antiferromagnets, and infinite-legged ladders. The geometry of the interaction scheme resembles the staggered dimer lattice, which may allow unconventional quantum criticality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.