Abstract
Entanglement of spin systems in a curved static space-time with \(\mathcal {PT}\) symmetric Hamiltonian is studied. It turns out that although a bipartite initial state is non entangled, one can generate in general a non vanishing ebit of entanglement through an elapsed proper time evolution. To be more specific an application of a pure state time evolution of a wave packet in a circular geodesic motion in a Schwarchild metric and \(\mathcal {PT}\) symmetric spin Hamiltonian is considered and the corresponding von Newman entanglement entropy is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.