Abstract

Ultrafast laser pulses interacting with plasmas can give rise to a rich spectrum of physical phenomena, which have been extensively studied both theoretically and experimentally. Less work has been devoted to the study of polarized plasmas, where the electron spin may play an important role. In this short review, we illustrate the use of phase-space methods to model and simulate spin-polarized plasmas. This approach is based on the Wigner representation of quantum mechanics, and its classical counterpart, the Vlasov equation, which are generalized to include the spin degrees of freedom. Our approach is illustrated through the study of the stimulated Raman scattering of a circularly polarized electromagnetic wave interacting with a dense electron plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call