Abstract

Exciton–polaritons in microcavities form an unusual gas of weakly interacting bosons. It has no direct analogy in cold atomic gases, superfluids or superconductors due to its two-component spin structure: in typical planar microcavities the polaritons have two allowed spin projections to the structure axis. This is why the order parameter of a polariton condensate is a complex spinor. The magnitude and, possibly, sign of polariton–polariton interaction constant depends on the spin state of polaritons. The energy of an exciton–polariton condensate is also spin-dependent. These specific features make polariton condensates a unique laboratory for studies of spin effects in interacting Bose gases. Several new spin-dependent effects in polariton condensates have been theoretically predicted and experimentally observed during the recent decade. This review chapter addresses some of these effects: polarisation multistability, spin switching, spin rings and spin Meissner effect. In the last section we address the perspective of observation of spin superfluidity in microcavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call