Abstract

Spin-dynamics of the spin-correlated radical pair (SCRP) P(700)(+)A(1A)(-) in the photosystem I (PSI) reaction center protein have been investigated with high-frequency (HF), time-resolved EPR spectroscopy. The superior spectral resolution of HF EPR enables spin-dynamics for both the donor and acceptor radicals in the pair to be monitored independently. Decay constants of each spin were measured as a function of temperature and compared to data obtained at X-band EPR. Relaxation times, T(1), and decay rates, k(S), are the same at both X- and D-band magnetic fields. The spin-dynamics within the radical pair were determined from theoretical simulation of experimental time-resolved HF EPR spectra. At low temperatures, T < 60 K, the decay of the SCRP from the singlet state, k(S), is the predominant process, while at high temperatures, T > 130 K, the T(1) relaxation is much faster than k(S). The recombination rate k(S) was observed to decrease as the temperature is increased. These EPR spectral results are in agreement with previously reported optical measurements of P(700)(+)A(1)(-) radical pair recombination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call