Abstract

Nonsequential two-photon double ionization of a two-electron system (He and He-like ions) in a circularly polarized intense laser field is developed in a relativistic field theoretic way. Antisymmetry is maintained in the correlated wave functions of He in the initial state after modification to include Dirac spinor, and in the Volkov wave functions of the two electrons in the final free state. The present theory endeavors to provide an estimate of the helicity-dependent angular asymmetry in spin-current generation in nonsequential two-photon double ionization. Angular dependence of circular dichroism obtained in this paper, in coplanar and orthogonal geometries, is compared with the only existing nonrelativistic result obtained using lowest-order perturbation theory. Present result for dichroism underestimates the nonrelativistic result. Entanglement in the spins of the ejected electrons is concluded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call