Abstract

We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd_{2}Zr_{2}O_{7} by neutron scattering experiments. At low temperature, this material undergoes a transition towards an "all-in-all-out" antiferromagnetic phase and the spin dynamics encompass a dispersionless mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above T_{N}≈300 mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near T_{N} do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the "all-in-all-out" order superimposed on a Coulomb phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.