Abstract

We consider a ferromagnetic spin-1 Bose-Einstein condensate (BEC) dispersively coupled to a unidirectional ring cavity. We show that the ability of the cavity to modify, in a highly nonlinear fashion, matter-wave phase shifts adds an additional dimension to the study of spinor condensates. In addition to demonstrating strong matter-wave bistability as in our earlier publication [L. Zhou et al., Phys. Rev. Lett. 103, 160403 (2009)], we show that the interplay between atomic and cavity fields can greatly enrich both the physics of critical slowing down in spin-mixing dynamics and the physics of spin-domain formation in spinor condensates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.