Abstract

The synthesis of bench-stable conjugated π-radicals is challenging owing to the lack of modular approaches, which greatly hampers their practical material screens and applications. Here, we demonstrate a spin-distribution-directed regioselective substitution strategy to introduce substituents into the specific positions of an olympicenyl radical in a stepwise manner, resulting in a series of highly stable radical species. The substituents can also adjust the crystal packing by means of steric and electronic factors, enabling the changing from a π-dimer to a pseudo-one-dimensional chain. The first single crystal organic field-effect transistor device based on a graphenic radical is fabricated in air, showing a hole mobility of up to 0.021 cm2 V-1 s-1 and excellent device stability. This approach may be generalized to diverse spin-delocalized open-shell organic radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call