Abstract
A mechanism of superconductivity coming from the doping of mobile fermions into the spin dimerized insulator such as spin Peierls state, valence bond glass, Heisenberg spins with next nearest neighbor exchange coupling and the Haldane gap state is discussed. The doping of fermions with narrow band into a Mott insulator with a spin gap results in the superconducting long range order in two- and three-dimensions, while results in the power law divergence of the pairing susceptibility with Tomonaga-Luttinger liquid character of charge in one-dimension. An example of numerical calculation in one-dimension is shown. The possible relevance of this mechanism to high-temperature superconductivity, where dynamical coupling of lattice distortion to spin may play a crucial role, is discussed. A relevant model Hamiltonian with spin-phonon coupling and dynamical spin-Peierls fluctuation is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.