Abstract

Spin-polarized fuels are promising for inertial confinement fusion due to the enhanced fusion cross section. One significant concern of spin-polarized inertial confinement fusion is whether the nuclei polarization could survive in the implosions and contribute to ignitions. Here we present numerical simulation methods and results of spin dynamics of polarized deuterium-tritium fuels in strong self-generated magnetic fields during the implosions of dense cylindrical shells. The magnetic field generation and evolution is modeled with generalized Ohm's laws combined with hydrodynamic equations. The spin dynamics is investigated with a particle-tracking method, by solving the spin precession equations of tracked particles. Rayleigh-Taylor instabilities and Richtmyer-Meshkov instabilities are found to be the main cause of depolarization. Hydrodynamic instabilities lead to depolarization of nuclei near the hot-spot shell interface, and an asymmetric shock front leads to depolarization of nuclei inside a hot spot. Deuterium polarization is more stable than tritium polarization due to its smaller gyromagnetic ratio. Low-mode perturbations can lead to higher depolarization inside a hot spot than high-mode perturbations. In the multimode simulations, the modes around 16-32 are significant for hot-spot depolarization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.