Abstract

Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.