Abstract

ABSTRACTElectrically detected magnetic resonance (EDMR) is used to study recombination processes in two types of gallium nitride light emitting diodes: in m/i/n/n+- and InGaN/AlGaN double-heterostructure devices. In the MIS-diodes, two resonances at g=1.96 and 2.00, corresponding to the effective mass donor and a deep defect are observed at room temperature. At low temperatures, an acceptor-related resonance at g=2.06 is visible as well. After current degradation, the spectra are dominated by the defect resonance, indicating that the creation of this defect is responsible for the decreased electroluminescence efficiency. In the double-heterostrucrure devices, EDMR can only be observed below 60 K showing the g=2.00 defect resonance. The same defect resonance is also observed in conventional electron spin resonance experiments under illumination (light-induced ESR).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.