Abstract

We report the experimental observation of spin-induced magnetoresistance in single-wall carbon nanotubes contacted with high-transparency ferromagnetic electrodes. In the linear regime the spin-induced magnetoresistance oscillates with gate voltage in quantitative agreement with calculations based on a Landauer-B\"uttiker model for independent electrons. Consistent with this interpretation, we find evidence for bias-induced oscillation in the spin-induced magnetoresistance signal on the scale of the level spacing in the nanotube. At higher bias, the spin-induced magnetoresistance disappears because of a sharp decrease in the effective spin polarization injected from the ferromagnetic electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call