Abstract

Proximity effects in normal metal/insulator/ferromagnetic semiconductor/superconductor (NM/I/FS/SC) and NM/I/SC/FS junctions are studied based on an extended Blonder–Tinkham–Klapwijk (BTK) theory. It is found that the magnitude of the proximity effects depends to a great extent on the mismatches of the effective mass and band between the FS and SC. For NM/I/FS/SC junction, the transition of the tunneling conductance from “0” to “π” state is determined by the mass, magnetic exchange energy in FS and the thickness of FS. For NM/I/SC/FS junctions, the conductance spectrum is spin-dependent, indicating a local coexistence of weak ferromagnetism and s-wave superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.