Abstract

The spin dependence of the conductance of an asymmetric double-barrier InGaAs device is studied within the multiband k¢p and envelope function approximations. The spin-dependent transmission probability for electrons across the structure is obtained using transfer matrices and the low bias conductance per unit area is calculated as a function of the Fermi energy (or doping) in the contacts. The possibility to obtain spin polarized currents in such devices is demonstrated, however, the resulting degree of polarization is rather small (a few percent) in the specific InGaAs structures considered here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.