Abstract

A gold surface is functionalized by chemisorption of the enantiopure N,N'-bis-[2,2';5',2″]tert-thiophene-5-yl methylcyclohexane-1,2-diamine (2T3N), a chiral oligothiophene derivative, via overnight incubation in a 2T3N ethanol solution. The Au|2T3N interface is characterized by x-ray photoelectron circular dichroism and comparing x-ray photoemission spectroscopy and electro-desorption results. Charge transmission at the Au|2T3N| solution interface is characterized by recording the cyclic voltammetry of the Fe(III)/Fe(II) reversible redox couple, finding a charge transfer rate constant, k°, variation from 1 × 10-1 to 3.3 × 10-2 cm s-1, when comparing the bare Au and the Au|2T3N interfaces, respectively. The "anomalous" high value of k° found for the chiral Au|2T3N interface can be rationalized on the basis of the chiral-induced spin selectivity effect, as further proved by magnetic-conductive atomic force microscopy measurements at room temperature. A spin polarization of about 30% is found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call