Abstract

The de Broglie-Bohm causal theory of quantum mechanics is applied to the hydrogen atom in the fully spin-dependent and relativistic framework of the Dirac equation, and in the nonrelativistic but spin-dependent framework of the Pauli equation. Eigenstates are chosen which are simultaneous eigenstates of the energy H, total angular momentum M, and z component of the total angular momentum Mz. We find the trajectories of the electron, and show that in these eigenstates, motion is circular about the z-axis, with constant angular velocity. We compute the rates of revolution for the ground (n=1) state and the n=2 states, and show that there is agreement in the relevant cases between the Dirac and Pauli results, and with earlier results on the Schrodinger equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.