Abstract

EPR and ESE in nitrogen doped 4H- and 6H-SiC show besides the well known triplet lines of 14N on quasi-cubic (Nc,k) and hexagonal (Nc,h) sites additional lines (Nx) of comparatively low intensity providing half the hf splitting of Nc,k. Frequently re-interpreted as spin-forbid¬den lines, arising from Nc,k pairs and triads or resulting from hopping conductivity, only re¬cent¬ly the theoretical calculation of the corresponding g-tensors lead to a tentative model of distant NC donor pairs on inequivalent lattice sites which are coupled to S = 1 assuming a fine-struc¬ture splitting too small to be observed in the EPR and ESE experiments. In this work, we pre¬sent ESE nutation measurements confirming S = 1 for the Nx center. Analysing the nutation frequencies in comparison with that of the Nc,k (S = 1/2) spectrum as well as the line width of ESE and EPR spectra we obtain a rough estimate between 5104 cm-1 and 50104 cm-1 for the fine-structure splitting demonstrating efficient spin-coupling between nitrogen donors in 4H-SiC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call