Abstract

The influence of the electron spin degree of freedom on nonperturbative electron–positron pair production by high-energy proton impact on an intense laser field of circular polarization is analyzed. Predictions from the Dirac and Klein–Gordon theories are compared and a spin-resolved calculation is performed. We show that the various spin configurations possess very different production probabilities and discuss the transfer of helicity in this highly nonlinear process. Our predictions could be tested by combining the few-TeV proton beam at CERN-LHC with an intense laser pulse from a table-top petawatt laser source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.