Abstract

We investigate quantum synchronization theoretically in a system consisting of two cold ions in microtraps. The ions' motion is damped by a standing-wave laser whilst also being driven by a blue-detuned laser which results in self-oscillation. Working in a non-classical regime, where these oscillations contain only a few phonons and have a sub-Poissonian number variance, we explore how synchronization occurs when the two ions are weakly coupled using a probability distribution for the relative phase. We show that strong correlations arise between the spin and vibrational degrees of freedom within each ion and find that when two ions synchronize their spin degrees of freedom in turn become correlated. This allows one to indirectly infer the presence of synchronization by measuring the ions' internal state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call