Abstract

The natural orbital functional theory is considered for spin uncompensated systems, i.e., systems that have one or more unpaired electrons. The well-known cumulant expansion is used to reconstruct the two-particle reduced density matrix. A new condition to ensure the conservation of the total spin is obtained for the two-particle cumulant matrix. An extension of the Piris natural orbital functional 1 (PNOF1), based on an explicit form for the cumulant, to spin uncompensated systems is also considered. The theory is applied to the calculation of energy differences between the ground state and the lowest lying excited state with different spins for first-row atoms (Li, Be, B, C, N, O, and F) and diatomic oxygen molecule (O(2)). The values we obtained are very accurate results as compared to the CCSD(T) method and the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call