Abstract

The reactivity pattern of small (approximately 10 to 20 atoms) anionic aluminum clusters with oxygen has posed a long-standing puzzle. Those clusters with an odd number of atoms tend to react much more slowly than their even-numbered counterparts. We used Fourier transform ion cyclotron resonance mass spectrometry to show that spin conservation straightforwardly accounts for this trend. The reaction rate of odd-numbered clusters increased appreciably when singlet oxygen was used in place of ground-state (triplet) oxygen. Conversely, monohydride clusters AlnH-, in which addition of the hydrogen atom shifts the spin state by converting formerly open-shell structures to closed-shell ones (and vice versa), exhibited an opposing trend: The odd-n hydride clusters reacted more rapidly with triplet oxygen. These findings are supported by theoretical simulations and highlight the general importance of spin selection rules in mediating cluster reactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call