Abstract

A novel high-pressure carbon dioxide (CO2) spin-coating apparatus was designed and constructed to produce high-quality thin films of CO2-soluble photoresists based on 1H,1H-perfluorooctyl methacrylate/tert-butyl methacrylate copolymers. Film thicknesses were correlated to various process variables including rotational speed, solution viscosity, and evaporative driving force. The effects of these operating conditions on the film thickness and uniformity were compared to those of a theoretical model adapted for spin coating in CO2. Excellent correlation was found between the theoretical predictions and observed film properties, with the final films being of sufficient quality for use in photolithography. The potential of this spin-coating process in CO2 for developing a novel “dry lithography” is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.