Abstract

We show that one of the key characteristics of interacting one-dimensional electronic quantum systems, the separation of spin and charge, can be observed in a two-component system of bosonic ultracold atoms even close to a competing phase separation regime. To this purpose we determine the real-time evolution of a single particle excitation and the single particle spectral function using density-matrix renormalization group techniques. Due to efficient bosonic cooling and good tunability this setup exhibits very good conditions for observing this strong correlation effect. In anticipation of experimental realizations we calculate the velocities for spin and charge perturbations for a wide range of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.