Abstract
The coupling of orbital and spin degrees of freedom is the source of many interesting phenomena. Here, we study the electron dynamics in a quantum billiard --a mesoscopic rectangular quantum dot-- with spin-orbit coupling driven by a periodic electric field. We find that both the spatial and temporal profiles of the observables demonstrate the transition to chaotic dynamics with qualitative modifications of the power spectra and patterns of probability and spin density. The time dependence of the wavefunctions and spin density distributions indicates spin-charge separation {seen in the decay of the spin-charge density correlators}. This new spin chaos effect can be experimentally verified leading to a better understanding of the interplay between spin and spatial degrees of freedom, relevant to fundamental and applied quantum physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.