Abstract
Physics Today's (very rudimentary) quantum computers come in different guises, each with their own set of pros and cons. A growing trend has been to put two different technologies together in hybrid architectures in order to have the best of both worlds. One of the aims of such initiatives is to realize long-distance coupling between spin qubits (quantum bits based on electron spins) in quantum dots (zero-dimensional semiconductor nanostructures that allow controlled coupling of one or more electrons) via interactions with a superconducting microwave cavity. Petersson et al. made progress toward that goal by coupling a double quantum dot in an InSb nanowire to the electric field of a cavity, taking advantage of the strong spin-orbit interaction of InSb. The coupling was demonstrated by using a pulse sequence to electrically control the spin state, which was then read out in the phase response of the cavity. The estimated spin-cavity coupling is still shy of the strong limit required for two distant spin qubits to communicate; however, it is expected that improving the quality of the cavity and the coherence of the qubit, and/or using a material with stronger spin-orbit interactions, will bring physicists closer to that goal. Nature 490 , 380 (2012).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.