Abstract

Using a free-electron model and a linear response theory we investigate spin-dependent electronic transport in magnetic nanocontacts in the ballistic regime of conduction. We emphasize the fact that in atomic-size ferromagnetic contacts it is possible to achieve the conductance value of e2/h, which implies a fully spin-polarized electric current. We explore some consequences of this phenomenon. In particular, we show that the presence of a nonmagnetic region in the nanocontact separating two ferromagnetic electrodes can lead to a spin blockade resulting in very large values of magnetoresistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.