Abstract

ABSTRACT Upcoming cosmological intensity mapping surveys will open new windows on the Universe, but they must first overcome a number of significant systematic effects, including polarization leakage. We present a formalism that uses scan strategy information to model the effect of different instrumental systematics on the recovered cosmological intensity signal for ‘single-dish’ (autocorrelation) surveys. This modelling classifies different systematics according to their spin symmetry, making it particularly relevant for dealing with polarization leakage. We show how to use this formalism to calculate the expected contamination from different systematics as a function of the scanning strategy. Most importantly, we show how systematics can be disentangled from the intensity signal based on their spin properties via map-making. We illustrate this, using a set of toy models, for some simple instrumental systematics, demonstrating the ability to significantly reduce the contamination to the observed intensity signal. Crucially, unlike existing foreground removal techniques, this approach works for signals that are non-smooth in frequency, e.g. polarized foregrounds. These map-making approaches are simple to apply and represent an orthogonal and complementary approach to existing techniques for removing systematics from upcoming 21 cm intensity mapping surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.