Abstract
The spin-asymmetric Josephson effect is a proposed quantum-coherent tunnelling phenomenon where Cooper-paired fermionic spin-$\frac{1}{2}$ particles, which are subjected to spin-dependent potentials across a Josephson junction, undergo frequency-synchronized alternating-current Josephson oscillations with spin-dependent amplitudes. Here, in line with present-day techniques in ultracold Fermi gas setups, we consider the regime of small Josephson oscillations and show that the Josephson plasma oscillation amplitude becomes spin-dependent in the presence of spin-dependent potentials while the Josephson plasma frequency is the same for both spin-components. Detecting these spin-dependent Josephson plasma oscillations provides a possible means to establish the yet-unobserved spin-asymmetric Josephson effect with ultracold Fermi gases using existing experimental tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.