Abstract
Silicon carbide with engineered point defects is considered as very promising material for the next generation devices, with applications ranging from electronics and photonics to quantum computing. In this context, we investigate the spin physics of the carbon antisite-vacancy pair that in its positive charge state enables a single photon source. We find by hybrid density functional theory and many-body perturbation theory that the neutral defect possesses a high spin ground state in $4H$ silicon carbide and provide spin-resonance signatures for its experimental identification. Our results indicate the possibility for the coherent manipulation of the electron spin by optical excitation of this defect at telecom wavelengths, and suggest the defect as a candidate for an alternative solid state quantum bit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.