Abstract

We investigate quantum dots in semiconductor PbTe nanowire devices. Due to the accessibility of ambipolar transport in PbTe, quantum dots can be occupied both with electrons and holes. Owing to a very large dielectric constant in PbTe of order 1000, we do not observe Coulomb blockade which typically obfuscates the orbital and spin spectra. We extract large and highly anisotropic effective Landé g-factors, in the range 20-44. The absence of Coulomb blockade allows direct readout, at zero source-drain bias, of spin-orbit hybridization energies of up to 600 \muμeV. These spin properties make PbTe nanowires, the recently synthesized members of group IV-VI materials family, attractive as a materials platform for quantum technology, such as spin and topological qubits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call