Abstract
We examine the evolution of paraxial beams carrying intrinsic spin and orbital angular momenta (AM) in gradient-index media. A parabolic-type equation is derived which describes the beam diffraction in curvilinear coordinates accompanying the central ray. The center of gravity of the beam experiences transverse AM-dependent deflections---the spin and orbital Hall effects. The spin Hall effect generates a transverse translation of the beam as a whole, in precise agreement with recent geometrical optics predictions. At the same time, the orbital Hall effect is significantly affected by the diffraction in the inhomogeneous medium and is accompanied by changes in the intrinsic orbital AM and deformations of the beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.