Abstract

Low- and high-lying K π = 1 + states and M1 transitions in 46,48Ti are studied. The model hamiltonian is treated in the quasi-particle particle random phase approximation (QRPA) with an exact restoration of its rotational invariance. A considerable spin contribution to the transition matrix elements is found for the low-energy (about 4 MeV) strong M1 transition (the orbital contribution being 30–70% of the spin one), although the microscopic structure of this state in 46Ti is typical for an orbital isovector excitation. The calculated energies and B(M1) values are in good agreement with the experimental data. The results are compared to the estimates of the isovector scissor model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.