Abstract
We study the quantum mechanical states of electrons situated on a cylindrical surface of finite axial length to model a semiconductor core-shell nanowire. We calculate the conductance in the presence of a longitudinal magnetic field by weakly coupling the cylinder to semi-infinite leads. Spin effects are accounted for through Zeeman coupling and Rashba spin-orbit interaction (SOI). Emphasis is on manifestations of flux-periodic (FP) oscillations and we show how factors such as impurities, contact geometry and spin affect them. Oscillations survive and remain periodic in the presence of impurities, noncircular contacts and SOI, while Zeeman splitting results in aperiodicity, beating patterns and additional background fluctuations. Our results are in qualitative agreement with recent magnetotransport experiments performed on GaAs/InAs core-shell nanowires. Lastly, we propose methods of data analysis for detecting the presence of Rashba SOI in core-shell systems and for estimating the electron g-factor in the shell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.