Abstract

We derive diffusion equations, which describe spin-charge coupled transport on the helical metal surface of a three-dimensional topological insulator. The main feature of these equations is a large magnitude of the spin-charge coupling, which leads to interesting and observable effects. In particular, we predict a new magnetoresistance effect, which manifests in a non-Ohmic correction to a voltage drop between a ferromagnetic spin-polarized electrode and a nonmagnetic electrode, placed on top of the helical metal. This correction is proportional to the cross product of the spin polarization of the ferromagnetic electrode and the charge current between the two electrodes. We also demonstrate tunability of this effect by applying a gate voltage, which makes it possible to operate the proposed device as a transistor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.