Abstract

We use quantum Monte Carlo simulations to study a finite-temperature dimensional-crossover-driven evolution of spin and charge dynamics in an anisotropic two-dimensional system of weakly coupled Hubbard chains with a half-filled band. The low-temperature behavior of the charge gap indicates a crossover between two distinct energy scales: a high-energy one-dimensional (1D) Mott gap due to the umklapp process and a low-energy gap which stems from long-range antiferromagnetic (AF) spin fluctuations. Away from the 1D regime and at temperature scales above the charge gap, the emergence of a zero-frequency Drude-like feature in the interchain optical conductivity ${\ensuremath{\sigma}}_{\ensuremath{\perp}}(\ensuremath{\omega})$ implies the onset of a higher-dimensional metal. In this metallic phase, enhanced quasiparticle scattering off finite-range AF spin fluctuations results in incoherent single-particle dynamics. The coupling between spin and charge fluctuations is also seen in the spin dynamical structure factor $S(q,\ensuremath{\omega})$ displaying damped spin excitations (paramagnons) close to the AF wave vector $q=(\ensuremath{\pi},\ensuremath{\pi})$ and particle-hole continua near 1D momentum transfers spanning quasiparticles at the Fermi surface. We relate our results to the charge deconfinement in quasi-1D organic Bechgaard-Fabre salts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call