Abstract

A model used to describe the 57Fe Mössbauer spectra for the binary BCC iron alloys rich in iron has been extended to account for the alloy crystallographic ordering. The ordering is accounted for by introducing single order parameter. Extension of the model is described in detail. The model has been tested applying it to the Fe–Cu alloys obtained by the arc melting and to the Fe–Zn alloys prepared by the solid state reaction. Random alloys are obtained up to ∼2 at% of Cu, and up to ∼8 at% of Zn. For higher impurity (minor alloy component) concentration it has been found that Cu atoms try to avoid Fe atoms in the iron matrix as nearest neighbors, while the opposite happens to the Zn atoms, albeit at much lesser scale, i.e., Zn–Zn interactions are much weaker than Fe–Zn interactions at the nearest neighbor distance. Perturbations to the iron magnetic hyperfine field (spin density) and electron (charge) density on the iron nucleus have been obtained for both series of alloys versus impurity concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call